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We present a local, distributed algorithm to detect measurement errors and infer missing readings
in environmental applications of wireless sensor networks. To bypass issues of non-stationarity
in environmental data streams, each sensor-processor node learns statistical distributions of dif-
ferences between its readings and the readings of its neighbors, as well as differences between its
current and previous readings. Scalar physical quantities such as air temperature, soil moisture,
and light flux naturally display a great degree of spatiotemporal coherence, which in turn leads to
a spectrum of fluctuations between adjacent or consecutive measurements characterized by small
variances. This permits stable estimation over a small state space. The estimated distributions
of differences are then used in statistical significance tests that exclude rare random errors in
measurements at any single sensor, and to infer missing readings. Compared to an alternative
method based on Bayesian classifiers, our algorithm is more storage-efficient, learns faster, and is
more robust in the face of non-stationary phenomena. Field results from a wireless sensor network
(Sensor Web) deployed at Sevilleta National Wildlife Refuge are presented.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]|: Distributed
Systems— Distributed applications

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Wireless sensor networks, data quality assurance

1. INTRODUCTION

Wireless sensor networks consist of multiple sensor-processor nodes that commu-
nicate with each other using radio frequencies. Sensor nodes, at present and in
the envisioned future, are simple devices that operate within limitations in local
memory storage and processing. These constraints, although by no means funda-
mental, are often the result of the practical considerations of producing devices that
are inexpensive, small, and autonomous. In addition, sensor operations, and their
communication in particular, are also limited by battery capacity or by the ability
to harvest power, e.g. through solar panels.

Networks of distributed sensors are a promising technology because they can sense
environments—natural and human made—over an unprecedented range of spatial
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and temporal scales [Szewczyk et al. 2004; Delin 2005]. However, the vast number of
nodes required to cover large areas, over long times, places practical constraints on
their individual cost. The drive for low-cost sensors and the need for unattended
operation, frequently in harsh environments, requires simple and robust devices.
Even the most robust devices, however, are subject to operational faults. Under
these circumstances it is crucial that isolated errors in individual components do
not jeopardize the operation of the whole network. Thus an important issue for this
emerging technology is data quality assurance and robustness of operation under
point failures [Elnahrawy and Nath 2003; Bychkovskiy et al. 2003].

A general approach for robustness to point failures is to create partial func-
tional redundancy among nodes in a sensor network. In some distributed sensor
applications this emerges naturally because neighboring nodes measure local en-
vironments that are temporally and spatially coherent. Then, measurements at
adjacent sensors, and at the same sensor over time, although potentially stochas-
tic and non-stationary, display significant amounts of mutual information. Hence
data quality can be assured through state co-inference between multiple, partially
redundant and correlated readings from neighboring nodes, or from the same node
at consecutive times [Estrin et al. 2002].

This paper presents a practical, distributed algorithm for detecting measurement
anomalies and estimating missing data in environmental applications of wireless
sensor networks. The algorithm has been designed for environmental sensing at the
Sevilleta Long Term Ecological Research (LTER) site by a Sensor Web developed at
NASA JPL [Delin and Jackson 2000; Delin 2002; 2005; Delin et al. 2005]. Because
it is designed to work under current technological constraints on memory and pro-
cessing, the algorithm is intentionally as simple and easy to implement as we found
possible. Processing occurs locally on each node and requires only communication
between proximal sensor nodes. Such local, distributed algorithms are desirable for
wireless sensor networks, where minimizing the amount of wireless communication
is a necessary operational constraint [Meguerdichian et al. 2001].

The remainder of the paper is organized as follows. First, we describe an approach
to data quality assurance based on Bayesian classifiers, as proposed in [Elnahrawy
and Nath 2004]. Next, we present our solution based on measurement differences
and compare the performance and implementation requirements with the Bayesian
classifier method. We then test our method on real data streams from a Sensor
Web deployed at the Sevilleta LTER site.

2. A BAYESIAN CLASSIFIER METHOD

Bayesian classifier methods are a powerful way to perform sequential estimation,
and are therefore a natural formalism for devising learning algorithms in distributed
sensor networks. However, the direct implementation of such methods tends to run
into the practical limitations of these simple devices.

A recent proposal for contert-aware sensors based on Bayesian classifiers uses
statistical correlations between sensor readings to detect outliers and approximate
missing readings [Elnahrawy and Nath 2004]. Assume that sensor measurements
take values in the interval [l,u], and let R = {r1,...,7,} be a disjoint cover of
this interval. Each subinterval in R is considered a discrete class, with average

ACM Journal Name, Vol. V, No. N, M 20YY.



In-Situ Data Quality Assurance : 3

precision (u —[)/m. Each node has its own classifier, consisting of the state of that
node’s previous reading, h, and of the measurements from two (indistinguishable)
nearby sensors, denoted as n € {(r;,r;) € R x R,i < j}. By Bayes’ theorem, the
conditional probability of a reading r;, given the previous value h at that sensor
and readings n from two nearby neighbors, is

P(h,n|r;)P(r;)

P(rilh,n) = P n) . (1)

In addition, to reduce the state space for inference, it is assumed in [Elnahrawy and
Nath 2004] that the neighbor’s spatial measurements and the temporal information
contained in the previous reading are conditionally independent, given the reading
of the sensor at the present time, yielding the “Naive Bayes” classifier!

P(h|r;)P(n|r;)P(r;)
PPM) @

The output of the classifier is inferred using the method of maximum a posteriori
(MAP) estimation [DeGroot 2004], and is given by

P(h|r;)P(n|r;)P(r;)
arg max P(r;|h,n) = arg max = arg max P(h|r;)P(n|r;)P(r;),
Cer (rifh.m) Ser P(h)P(n) Ber (hlr) Plniri) P(rs)
3)

where the denominator can be omitted from the optimization because it does not
depend on r;.

In this approach, a missing reading is approximated by the midpoint of the subin-
terval returned by the classifier. For outlier detection, the probability of the sensed
reading is compared to the probability of the most likely measurement according
to the classifier. The sensed reading is determined to be an outlier if the two
probabilities differ by more than a user-defined threshold.

This method is exhaustive and powerful in classifying all possible states of the
system and learning their likelihood, but runs into practical implementation prob-
lems. To see this, consider that each node must learn the parameters of its classifier
online. To learn P(r;), a node keeps a count of the number of times r; occurs for
each of m possible values. To learn P(h|r;), a node also keeps a count of the number
of times h and 7; occur together for each of m? possible combinations. Similarly,
to estimate P(n|r;), a node must keep a tally of the number of instances n and
r; occur together, for each of (m3 + m?)/2 possible states. Finally, to compute
probabilities for outlier detection, a node learns P(n) online by keeping a count of
the number of times n occurs for each of (m? +m)/2 values. P(h) is given by P(r;)
where 7; = h and a node must also keep a count of the total number of instances
observed. Thus the total number of states stored is

P(’I"z|h,7’l,) =

3
%+2m2+37m+1. (4)

Expression (4) was obtained by considering the measurements of a node relative
to two neighbors. For k£ > 2 neighbors, the corresponding expression scales with

11t is worth noting that these assumptions do not apply to ecological environmental data under
most circumstances.
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leading exponent k + 1.

The size of the state space required for inference is important for two reasons.
First, nodes typically have limited storage capacity, which in turn limits precision.
Consider the example of covering a range of 100 degrees with 1 degree precision.
Then a classifier would have to store 520,151 counts, or roughly 2 megabytes. Sec-
ondly, the amount of learning data required to populate the state space is prohibitive
in many cases. In the same example at least 5 million learning instances would be
necessary for estimation (taken here to be roughly an order of magnitude greater
than the size of the state space). To put this into perspective, consider that a node
taking a reading every five minutes (e.g., [Delin 2005]) would require about 47 years
to populate its state space.

The issue of learning is even more critical in cases involving non-stationary phe-
nomena because the learning rate cannot be slower than the rate at which parame-
ters evolve. For example, in the case of outdoor air temperature, conditions change
throughout the day as the sun rises, moves across the sky (e.g., placing sensors
in and out of shadows), and sets. In addition, conditions also change with season
and from year to year, such that combinations of data that occur frequently during
a hot summer will appear rarely during a cold winter, and will differ to the next
summer. Thus an important discriminating criterion for any data quality assur-
ance method is that it must operate on a timescale commensurate with that of any
non-stationary phenomena being measured. For ecological environmental sensing
this time scale is typically a few hours.

3. A METHOD BASED ON DIFFERENCES

We now propose an alternative method for data quality assurance, in which each
node learns statistical distributions of differences between its readings and those
of its neighbor’s, and also between its own measurements at different times. Such
distributions, together with current measurements from a sensor’s neighbors and
the sensor’s previous reading, are then used to identify anomalous measurements
and to infer missing values. Although inspired by the general idea of context-
aware sensors, this method is fundamentally different in implementation from the
Bayesian approach described in the previous section. Compared to the Bayesian
classifier, our method is more storage-efficient, learns faster, and is more robust in
the face of non-stationary phenomena.

The crucial assumption required for the method to work is that the observed
phenomena are spatiotemporally coherent, so that the measurements at neighbor-
ing sensors, and at the same sensor over time, display a large amount of mutual
information. This is true of ecological environmental applications, where typical
node-to-node spacings are in the range of 100-200 meters or less. Moreover, envi-
ronmental variables such as air temperature, humidity, light flux, soil temperature,
and soil moisture display a substantial amount of temporal correlation. It is as-
sumed below that measurements at different sensors are performed at time intervals
which are much smaller than the temporal correlation time. This is a characteristic
of Sensor Web measurements, which are synchronous across the entire network. An
additional final assumption of the method is that the probability density of the dif-
ferences has a peak near the mean and tails that taper as differences deviate away
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Fig. 1. A statistical probability distribution illustrating the likelihood of observing an extreme
difference. In this example, 88% of differences are between —2 and 3, with 7% of differences less
than or equal to —2, and 5% greater than or equal to 3.

from it (e.g., see Figure 1). That is, the method assumes that the probability of
observing a difference decreases with the distance between that difference and the
mean of all observed differences. This is not a strong assumption and could easily
be relaxed in more complex circumstances if judged necessary.

Under these circumstances spatial and temporal measurement differences have a
more stationary distribution than individual sensor readings. This permits more
stable estimation over a much smaller state space. The estimation of differences
between sensors placed at different micro-environments, or between those and ex-
perimental controls can also capture quantities of direct ecological interest [Collins
et al. 2006].

Consider then a node with k& neighbors. Let ¢ be the node’s reading, ¢g be
its previous measurement, and ¢;,7 = 1,..., k, be the readings of its neighbors. At
each new measurement the node computes the difference between its current reading
and its previous measurement and between its reading and each of its neighbor’s
d; =¢—¢;,1 =0, ..., k. Given knowledge of the distribution of differences each new
observation can be tested for errors. The probability of observing a difference d as
or more extreme than d; is

p; = min [P;(d < d;), Pi(d > d;)] , (5)

where the probability P; is specific to temporal differences or differences with neigh-
bor ¢. For example, consider the distribution shown in Figure 1, in which 88 percent
of differences fall between —2 and 3, with 7 percent of differences less than or equal
to —2, and 5 percent greater than or equal to 3. If d; = —2, then P;(d < —2) = 0.07
and P;(d > —2) = 0.93. Thus p, = min[0.07,0.93] = 0.07. Similarly, if d; = 3, then
Pi(d <3)=0.95 and P;(d > 3) = 0.05. Thus p; = min[0.95,0.05] = 0.05.

Each probability distribution P; is learned from observed differences. There are
several ways to implement such an estimation, depending on the degree of prior
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knowledge. If the distributions are known to belong to a particular class, then
learning consists of estimating corresponding functional parameters.

For example, if the distributions are known to be normal, then P; is defined by
its mean and variance, which is estimated in the standard way as

(t— 1)Hi,t—1 +d;
t )

(6)

Hit =

o (=202, 4 (dig — pig)”

it T t—1 ’ (7>
where ¢ indexes times when differences are observed ( for simplicity, assumed here
to be synchronous across the network), and p; 0 = 07y = 07, = 0. Thus under
parametric estimation a node does not need to store/previously observed differ-
ences; only the current estimates for the distribution parameters and the number
of utilized instances are required. For a normal distribution this is u; and o? for
differences in time and differences in space relative to each neighbor, and also ¢.
Thus the total storage required in this case is 2(k + 1) floating point numbers and
an integer, roughly 24 bytes for a node with two neighbors. In addition, the mean
and variance can be approximated from as little as 10 observed differences. Dis-
crete distributions, such as Poisson or negative binomial, which may be relevant in
many sensing problems, require similar, or smaller, estimation effort and memory
storage.

In Equations (6) and (7), the influence of a new difference in approximating pu;
and o? decreases with the number of previous observations. Therefore, in the case
where the distributions are non-stationary, ¢ can be reset at intervals commensurate
with the characteristic times of the phenomena under observation. To achieve this
in the simplest terms Equations (6) and (7) can be rewritten as

ag

it = (1—a) pip—1+ adiy (8)
1 -2« Q@ 9
0'1'2,1& = ﬁait—l + 1T a (die — i)™, 9)

where a € (0, 1) controls the relative influence between the previous and the current
observation in updating the parameters. The larger the value of o the higher
the weighting of the current observation in the estimation procedure. Note that
Equations (8) and (9) are equivalent to Equations (6) and(7) when a = 1/¢.

By varying « we obtain the best estimator for the distribution parameters under
the joint constraints of a limited number of samples and non-stationary data. The
limit as @ — 0 corresponds to no update of the distribution resulting from the
current reading. Even if perfect prior knowledge of the parameters is given at
some time, this eventually fails because of the non-stationarity of the phenomenon.
As such, the error between actual and predicted data must increase, eventually, as
a — 0. On the other extreme, when ae — 1, only the current measurement is used in
predicting the distribution. This fails because of the standard estimation problem
that a small sample of realizations generates imprecise parameter determinations.
This reasoning indicates that there is an intermediate value for o that minimizes
the error between actual and inferred measurements. We illustrate these features

ACM Journal Name, Vol. V, No. N, M 20YY.



In-Situ Data Quality Assurance . 7

of our scheme in the next section with environmental data from the Sensor Web
deployed at the Sevilleta LTER site.

So far we have discussed the case of parametric estimation of known distribu-
tions. When the distributions are not known to belong to a particular class, non-
parametric estimation is still straightforward, although resulting in slightly larger
memory requirements. To do this, we estimate differences over a frequency his-
togram by dividing the interval of possible differences, [l4, u4], into m subintervals.
Note that sensor readings are usually subject to device precision and consequently
discretization of continuous variables, such as temperature, may not result in further
approximation. The average precision, (ug — lg)/m achieved in our estimation of
differences, is generally much higher than that of the Bayesian classifier, (u —1)/m,
because ug — g is typically much less than v — [. For example, while temperature
readings may range from 0 to 100 degrees, differences between temperature read-
ings at neighboring sensors may only vary between —5 and 5 degrees. Thus using
100 subintervals yields an average precision of 0.1 degrees for this method versus 1
degree for the Bayesian classifier.

To approximate P;, a node keeps a count of the number of times observed differ-
ences fall in each subinterval. The probability P;(d < d;) is the sum of counts for
subintervals overlapping (—o0, d;], normalized by the sum of all counts. Therefore,
in the non-parametric case, a node needs to store m(k + 1) integers or roughly
4m(k + 1) bytes. For example, to cover a range of differences spanning 10 degrees
with 1 degree precision, a node with 2 neighbors would have to store 30 states
or roughly 120 bytes, whereas the Bayesian classifier would have to store roughly
2 megabytes. In addition, the amount of learning data required to populate the
counts is much smaller than for the Bayesian classifier. For example, to cover a
range of differences spanning 10 degrees with 1 degree precision would require about
100 observations (roughly an order of magnitude greater than the size of the state
space), versus about 5 million learning instances for the Bayesian classifier. In
terms of learning time for a node taking a reading every five minutes, this method
would require about 9 hours, versus 47 years for the Bayesian classifier. In some
cases, a number of measurements commensurate with the size of the state space
may suffice, resulting in learning times an order of magnitude below these numbers;
however, the ratio between the learning times for each method would be the same.

The probabilities, p;,i = 0, ..., k, are then used to identify anomalous readings.
The idea is that anomalous measurements are relatively rare and result from in-
dependent point failures that create unusual differences between a node’s readings
over time and/or between its current measurements and those of its neighbors. The
average probability,

k
Zpi

_ =0
==
can be compared to a user defined threshold such that readings that are unusually
different from previous readings and from readings taken at neighboring nodes
are flagged as anomalous. The probabilities are averaged rather than multiplied
because they are not independent. Thus, the robustness of the method to false

positives due to an anomalous reading at a neighboring node increases with the

(10)
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number of neighbors. The several probabilities p; can also be weighted based on
the uncertainty (e.g. the variance) of the difference distributions to different nodes
or the relative degree of spatial versus temporal coherence in the measurements.
For example, in sensor networks where nodes are close together, but measurements
are infrequent, probabilities associated with spatial differences can be given more
weight than those associated with temporal change. Similarly, in sensor networks in
which nodes are far apart, but frequent measurements are performed, probabilities
associated with temporal differences may be preferred.
A missing reading can be approximated simply by

k

> (¢ + pa), (11)

=0

T =

| =

where ¢; is the reading of the ith neighbor and p; is the mean difference relative to
the ¢th neighbor, or if i = 0, ¢ is the previous reading and p is the mean difference
between the current and previous measurements. A weighted average based on a
measure of mutual information between the nodes could also be adopted, but we
use the simplest scheme here. In the case where the distribution class is known, p;
is a stored value. If instead the distribution class is not known, the mean difference
can be approximated by its familiar maximal likelihood estimator

1 m
pi=— Y emy, (12)
m =

where ¢; is the count for the jth subinterval and m; is the midpoint of the jth
subinterval.

4. RESULTS FROM SEVILLETA LTER SITE

In this section, we test our method using ecological data collected by a Sensor Web,
developed at NASA/JPL [Delin et al. 2005; Delin 2005], deployed at the Sevilleta
LTER site. A Sensor Web is a spatially distributed macro instrument, where every
component sensor node (or “pod”) shares its readings, at each measurement cycle,
with all other pods in the system [Delin and Jackson 2000]. The Sensor Web is
designed to maintain synchronicity among all component pods which makes it ideal
for the type of correlated statistical analysis proposed in the previous section.

The Sensor Web was initially deployed at the Sevilleta LTER site in 2003 as part
of an ongoing effort to measure canopy microclimate effects of three arid land plant
species: Juniperus monosperma (one-seeded juniper), Larrea tridentata (creosote
bush), and Prosopis glandulosa var. torreyana (honey mesquite) [Collins et al.
2006]. The deployed Sensor Web consists of 14 sensor pods, (see Figure 2) that
measure air temperature, humidity, light flux, soil temperature, and soil moisture
at a chosen rate (here every five minutes).

The method for inferring missing readings, presented in the previous section, was
tested by comparing inferred values to actual measurements. We selected an envi-
ronmental variable (air temperature), a pod (pod 5), a set of neighbors (pods 8, 9,
11, 12, and 13), and a period of time (the first two days of July, 2005). Pod 5 and its
neighbors were chosen to maximize the number of simultaneous measurements dur-
ing the time period. We used the parametric version of the method [Equations (6)
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SENSOR WEB POD KEY

0 = Portal Pod
1=0pen-L

2 = Repeat 1 (Open)
3 = Juniper- M

4 = Repeat 2 (Open)
5= Juniper-L

6 = Juniper - M

7 =Creosote - L

8 = Mesquite - L

9 = Mesquite - M

10 = Mesquite - H
11=0pen-H

12 =Creosote -M
13 =Creosote - H

Fig. 2. Aerial photograph showing the Sensor Web layout at the Sevilleta LTER site. Fourteen
sensor pods are distributed over a range of a few hundred meters to measure microclimate effects
of the surrounding arid land plants. At regular time intervals, the pods transmit data wirelessly
to nearby pods. Sensor measurements eventually reach pod 0, where they are recorded.

0.45
0.40 - 4
035 T \ b
0.30 - b
025 4

0.20 - 4

Probability Density
o
o
T
|

0.10 - 4

0.05 - b

0.00 —_— =

-5 -4 -3 -2 -1 0 1 2 3 4
Difference (°C)

Fig. 3. A histogram of air temperature differences between pod 5 and pod 12 for the first two days
of July, 2005. The solid line shows the normal distribution with the same mean and variance.

and (7)] because the distributions of differences are approximately normal (e.g., see
Figure 3). Figure 4 shows the inferred and actual readings for pod 5. The average
error over the time period was 0.717 degrees Celsius. The spike of 3.3 degrees at
2:57 on July 2 is the result of simultaneous spikes in the readings at pods 8, 9, 11,
12, and 13 of 2.2, 4.0, 5.2, and 4.2 degrees, respectively, while at the same time,
the measured air temperature at pod 5 decreased by 0.7 degrees.

Because nodes have different placements, corresponding to distinct micro-climates,
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Fig. 4. Actual versus inferred air temperatures at sensor pod 5. The inferred measurements were
computed using Eq. (11) and assuming that the distributions of the differences were stationary
and approximately normal so that Egs. (6) and (7) can be used.

the distributions of differences are still somewhat non-stationary. During warmer
parts of the day, the more exposed nodes are warmer, but during cooler parts of the
day (e.g. at night) the converse is observed (the more exposed nodes are cooler).
Under these non-stationary conditions the average measurement error can be re-
duced by using Equations (8) and (9) with the appropriate value of a that optimizes
the learning rate. Figure 5 shows the average error as a function of . The mini-
mum average error of 0.366 degrees Celsius is achieved for @ = 0.46. Figure 6 shows
the inferred and actual readings for pod 5, using o = 0.46.

The difficulty of validating any method for anomaly detection using real data is
that there is usually no way to know a priori which readings are truly anomalous. To
circumvent this problem we created an artificial data set (see Figure 7), composed
of a slow amplitude variation of a fast periodic cycle to introduce non-stationary
effects, together with random point variations to simulate the effects of sensor
errors. With this prescription, time series for three nodes are given by

£i(t) = 11 + 5sin <”+m> 4 sin (10 <”+m>) + o (13)

2 400 2 400
™ it ™ it
= sin (—= 4+ — ) +sin (10 [ —= + — 14
f2(t) 9+551n( 2+400)+sm( O( 2+400))+s02 (14)
T Tt T Tt
t) =6+ 5si -4+ — 51 10 —=+— 15
f3(t) + bln( 5 T 400> +sm( ( 5 T 400>) + 3, (15)

where ¢t = 0,...,400 and ¢1, @2, and @9 are random variables generated from a
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Fig. 5. The average error between the actual data and inferred data as a function of the learning
rate, a. The average error is computed using the entire two-day period of measurements. The
minimum average error of 0.366 degrees Celsius is obtained for a = 0.46.
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Fig. 6. Actual and inferred air temperatures at sensor pod 5. The inferred measurements were
computed using Eq. (11) with estimates of the difference distribution parameters given by Egs. (8)
and (9), with learning rate o = 0.46.
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t

Fig. 7. Actual and detected anomalies for the artificial data sets of Egs. (13)-(15). Using the
parametric version of the method [Egs. (6) and (7)] and a probability threshold set to p = 0.005,
all the anomalies are detected correctly. The top, middle, and bottom lines are fi, f2, and f3,
respectively.

normal distribution with zero mean and standard deviation o = 0.1. In addition, 20
readings from f, were randomly selected and perturbed by either —1 or 1. Because
the distributions of differences for this example are normal, we used the parametric
version of the method [Equations (6) and(7)]. With the probability threshold set to
p = 0.005, the method displays perfect performance, identifying all the anomalies
without any false positives.

5. CONCLUSIONS

We presented a local, distributed algorithm for data quality assurance in wireless
sensor networks in which each sensor-processor node learns statistical distributions
of differences between its readings and those of its neighbors, as well as for differ-
ences between its measurements over time. Each sensor uses these distributions,
along with previous and current readings across its neighbors, to identify anoma-
lies and infer missing measurements automatically. The method is intentionally
as simple as possible in order to cope with the limited memory and processing
capabilities that characterize current sensor network technology. Compared to an
alternative method based on Bayesian classifiers, the algorithm proposed here is
more storage-efficient, learns faster, and is more robust to non-stationary phenom-
ena. In addition, the storage, processing, and communication requirements are
such that it can be implemented in a distributed fashion, on each of the nodes in
the network, thus reducing remote communication. Because of these qualities, the
algorithm can provide data quality assurance for current generation wireless sensor
networks, such as the Sensor Web deployed at the Sevilleta LTER site. In the
process of learning distributions of differences for data quality assurance, the algo-
rithm also produces statistics that compare different microclimate environments, to

ACM Journal Name, Vol. V, No. N, M 20YY.



In-Situ Data Quality Assurance : 13

each other and to control experiments, which are of immediate scientific ecological
interest.
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